QUINTO PANEL VIRTUAL COVID-19:
Estrategias de tratamiento, vacunas y antivirales

Cornelis P. Vlaar, Ph.D.

April 23, 2020
Drug Discovery and Development Process

Exploratory Early Discovery
- Lead Identification
- Lead Optimization
- Preclinical Transition

Lead Identification
- Assay Development
- Screening
- Medicinal Chemistry

Lead Optimization
- SAR – Improve potency
- In vivo testing
- Pharmacokinetics
- Metabolism
- Pre-Tox

Preclinical Transition
- Complete Tox
- Safety studies
- Process Chemistry
- Scale-up
- Formulation
- IND

Basic Sciences:
- Target Identification and Validation
Drug Discovery and Development Process

Exploratory Early Discovery
- Lead Identification
- Lead Optimization
- Preclinical Transition

Phase I
- 20-80 volunteers
- Safety and Dosage
- Several months
- Possible side effects
- Early efficacy
- ~70% to next phase

Phase II
- Up to 100’s volunteers
- Efficacy and side effects
- Several months – 2 years
- Additional safety data
- Help design Phase III
- ~33% to next phase

Phase III
- 300-3,000 volunteers
- Treatment Benefit
- Safety Data/rare side effects
- 1– 4 years
- ~25-30% to next phase

Registration
- Drug Approved
- Post-market safety monitoring
Clinical Trial Standard:
Randomized Double-blind Placebo-controlled (multi-center)

Diseased population

Representative Group:
Inclusion/Exclusion criteria
- Age
- Stage of disease
- Laboratory results
- Other
Clinical Trial Standard:
Randomized Double-blind Placebo-controlled (multi-center)

Representative Group:
Inclusion/Exclusion criteria
- Age
- Stage of disease
- Laboratory results
- Other

Diseased population

Standard treatment + Placebo

Randomize:
Blind to
- Patient
- Physician

Standard treatment + Drug
Clinical Trial Standard:
Randomized Double-blind Placebo-controlled (multi-center)

Representative Group:
Inclusion/Exclusion criteria
- Age
- Stage of disease
- Laboratory results
- Other

Diseased population

Randomize:
Blind to
- Patient
- Physician

Outcome:
Statistical analysis on whether drug achieves expected outcome significantly compared with placebo

Standard treatment + **Placebo**
Standard treatment + **Drug**
Drug Discovery and Development Process

FDA timeline

- 100’s to 1000’s of drug candidates
- 9.5 to 13 years for only ONE approved drug
- HOW CAN WE REDUCE THE TIMELINE?
FASTEST SOLUTION: DRUG REPURPOSING

Investigate whether an already approved drug can be used to treat COVID-19:

- Already tested in humans
- Detailed information is available on
 - pharmacology
 - formulation
 - potential toxicity
- Reduces time frame
- Decreases costs
- Improves success rates

Repurposed candidate therapies can be:

- Ready for clinical trials quickly
- Quickly reviewed by the Food and Drug Administration
- If approved, rapidly integrated into health care.

Also consider potential drugs in development for SARS or MERS
FASTEST SOLUTION: DRUG REPURPOSING

795 Studies found for: COVID-19
Also searched for SARS-CoV-2. See Search Details

Your search included: COVID-19
Learn more about clinical studies related to COVID-19:
- ClinicalTrials.gov: Federally-funded clinical trials
- WHO Trial Registry Network: COVID-19 trials
- CDC: Information for Clinicians on Therapeutic Trials

Showing: 1-100 of 795 studies 100 studies per page
We already know a lot...

...There are pictures:
This transmission electron microscope image of SARS-CoV-2 isolated from a patient in the U.S., emerging from the surface of cells cultured in the lab.

Credit: NIAID-RML
We already know a lot...

...the virus life cycle

The life cycle of SARS-CoV
We already know a lot...

Four human coronaviruses produce symptoms that are generally mild:
- HCoV-OC43, HCoV-HKU1, HCoV-229E, HCoV-NL63

...experience with previous infections

Three human coronaviruses produce symptoms that are potentially severe:
- Severe acute respiratory syndrome coronavirus (SARS-CoV)
 Year: 2002 confirmed cases: 8096 Deaths: 774

- Middle East respiratory syndrome-related coronavirus (MERS-CoV)
 Year: 2012 confirmed cases: 2494 Deaths: 858

- Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
 Year: 2020 confirmed cases: >2,500,000 Deaths: >170,000

...Drugs available against other viruses

- HIV virus
- Hepatitis C virus
- Influenza virus
- Herpes virus
Strategy 1: Block virus entry

Entry at plasma membrane

Antibodies to the virus
- Our own immune system
- Convalescent plasma
- Hyperimmune therapy
 - Pooled concentrated plasma
- Monoclonal antibodies
Strategy 1: Block virus entry

Entry at plasma membrane

TMPRSS2: Cleaves Spike Protein in S1 and S2
- **Camostat:** Blocks TMPRSS2
- Entry of virus blocked

Approved in Japan for Pancreatitis
Strategy 1: Block virus entry

rhACE2: Previously tested in clinical trials

Deficiency of ACE2 implicated in acute respiratory distress syndrome

Infusion of rhACE2 hypothesized to address this

Small clinical trial:
- rhACE2 appears safe
- rhACE2 catalyzes hydrolysis of AT-II to angiotensin (1-7)
- No significant clinical improvements

Recombinant human angiotensin converting enzyme 2 (rhACE2):

- Binds to Spike Protein
- Traps virus
- Entry of virus blocked
Strategy 1: Block virus entry

Interactions between SARS-CoV-2-RBD and ACE2

Arbidol
Approved in Russia for influenza

Science 27 Mar 2020:
Vol. 367, Issue 6485, pp. 1444-1448
Strategy 2: Inhibit replication/transcription

RdRP: RNA dependent RNA Polymerase

If inhibited:
- Inhibition of replication of RNA
- Inhibition of transcription of RNA
- Inhibition of formation of proteins
- Inhibition of viral replication
Strategy 2: Inhibit replication/transcription

Remdesivir
- No approval
- Developed for Ebola
- Active in SARS and MERS

Favipiravir
- Approved in Japan
- Treatment of influenza

Ribavirin
- Approved in US/worldwide
- In combination with interferon for treatment of hepatitis C
Strategy 2: Inhibit replication/transcription

RNA strand

Template RNA strand

A
U
G
C
A
U
G
C
Strategy 2: Inhibit replication/transcription

Template RNA strand

A
U
G
C
A
U
G
C
Strategy 2: Inhibit replication/transcription
Strategy 2: Inhibit replication/transcription

Template RNA strand
Strategy 2: Inhibit replication/transcription

Template RNA strand

A
U
G
C
A
U
Strategy 2: Inhibit replication/transcription

Template RNA strand

G
C
A
U
Strategy 2: Inhibit replication/transcription

Template RNA strand

G
C
A
U
Strategy 2: Inhibit replication/transcription
Strategy 2: Inhibit replication/transcription

Template RNA strand
Strategy 2: Inhibit replication/transcription

Remdesivir
\[\text{ACTIVATION} \]
Activated Remdesivir

Faviparivir
\[\text{ACTIVATION} \]

Ribavirin
\[\text{ACTIVATION} \]
Strategy 2: Inhibit replication/transcription

Template RNA strand

Activated Remdesivir
Strategy 2: Inhibit replication/transcription

Activated Remdesivir
Strategy 2: Inhibit replication/transcription

Template RNA strand

Activated Remdesivir
Strategy 2: Inhibit replication/transcription

[Diagram showing RNA strand and activated Remdesivir]
Strategy 2: Inhibit replication/transcription

Template RNA strand

BLOCKED
Stop Viral replication

Activated Remdesivir
Strategy 2: Inhibit replication/transcription

Fig. 4 Incorporation model of remdesivir in COVID-19 virus nsp12.

Yan Gao et al. Science 2020;science.abb7498
Strategy 3: Block Protease Activity

Cleaved by Papain Like Protease (PLPRO)
Cleaved by 3C-like protease (3-CLPRO) = Main protease (MPRO)

Strategy: Inhibit a Protease
- Polyprotein does not get cleaved
- Relevant proteins do not get formed
- Virus can not replicate
Strategy 3: Block Protease Activity

APPROVED HIV-DRUGS CURRENTLY IN CLINICAL TRIALS FOR COVID-19

HIV-Protease Inhibitor

Lopinavir-Ritonavir

Darunavir-Cobicistat

Use of these protease inhibitors debatable:
- 2019-nCoV proteases PLA₂ and M_{PR} are cysteine proteases
- HIV protease is an aspartic protease
- HIV protease inhibitors optimized to fit in the catalytic site of HIV protease dimer
- Potency remains a concern
Strategy 3: Block Protease Activity

13a: Developed to inhibit M^{PRO} of SARS coronavirus – Not brought to clinic
13b: Modified to inhibit M^{PRO} of SARS-Cov-2

Need to perform toxicity studies
Strategy 4: Block Inflammatory Response

- Hospitalized SARS-CoV-2 patients – can enter severe phase of the disease
- Hyper-inflammation - immune system overactive - cytokine storm
- Increased levels of interferons α and β and **IL-6**

Actemra® (tocilizumab) approved in 2010
Blocks Interleukin-6 (**IL-6**) receptor
- Arthritic diseases
- Cytokine release syndrome

Kevzara® (sarilumab) approved in 2017
Blocks Interleukin-6 (**IL-6**) receptor
- Moderately to severely active rheumatoid arthritis
Strategy 4: Block Inflammatory Response

- Both inhibit Janus kinase (JAK1/JAK2)
 - Reduces cytokine storm
- Also inhibit enzymes related to viral entry
- **Concern:** Inhibit response of immune system to virus

FDA approved
- 2018
 - Moderate to severe arthritis

FDA approved
- 2011
 - myelofibrosis
Chloroquine and Hydroxychloroquine

Hypothesized mechanisms:
- Raise endosomal pH slightly, which prevents fusion of virus to enter the cell.
- Block enzymes involved in the fusion between the virus and lung cells
- Block viral replication process
- Reduce inflammation

Issues:
- Side effects – cardiotoxicity
- Availability
- Efficacy not proven

FDA: Emergency use authorization for COVID-19 (March 28, 2020)

Chloroquine
Approved as anti-malarial drug

Hydroxychloroquine
Approved for treatment of
- systemic lupus erythematosus
- rheumatoid arthritis
Clinical Trial Standard:
Randomized Double-blind Placebo-controlled (multi-center)

Representative Group:
Inclusion/Exclusion criteria
- Age
- Stage of disease
- Laboratory results
- Other

Diseased population

Randomize:
Blind to
- Patient
- Physician

Standard treatment + Placebo

Standard treatment + Drug

Outcome:
Statistical analysis on whether drug achieves expected outcome significantly compared with placebo
WHO global megatrial – SOLIDARITY (March 18, 2020)

Four Drugs
• Remdesivir
• Chloroquine and hydroxychloroquine
• Lopinavir – ritonavir
• Lopinavir - ritonavir plus interferon-beta

Patient with confirmed COVID-19
• Physician enters patient’s data into a WHO website, including any underlying condition, such as diabetes or HIV infection.
• Patient signs informed consent form - scanned and sent to WHO electronically
• Physician states which drugs are available at hospital
• Website randomizes the patient to one of the drugs available or to the local standard care for COVID-19.

Obtained data (>100 countries)
• Physician will record the day the patient left the hospital or died
• Duration of the hospital stay
• Whether the patient required oxygen or ventilation

Adaptive – Other drugs can be included