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Abstract
In recent years, research in the area of intervention development is shifting from the traditional
fixed-intervention approach to adaptive interventions, which allow greater individualization and
adaptation of intervention options (i.e., intervention type and/or dosage) over time. Adaptive
interventions are operationalized via a sequence of decision rules that specify how intervention
options should be adapted to an individual’s characteristics and changing needs, with the general
aim to optimize the long-term effectiveness of the intervention. Here, we review adaptive
interventions, discussing the potential contribution of this concept to research in the behavioral
and social sciences. We then propose the sequential multiple assignment randomized trial
(SMART), an experimental design useful for addressing research questions that inform the
construction of high-quality adaptive interventions. To clarify the SMART approach and its
advantages, we compare SMART with other experimental approaches. We also provide methods
for analyzing data from SMART to address primary research questions that inform the
construction of a high-quality adaptive intervention.

NIH Public Access
Author Manuscript
Psychol Methods. Author manuscript; available in PMC 2013 December 01.

Published in final edited form as:
Psychol Methods. 2012 December ; 17(4): . doi:10.1037/a0029372.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Keywords
Adaptive Interventions; Experimental Design; Sequential Multiple Assignment Randomized Trial
(SMART)

Introduction
In adaptive interventions the type or the dosage of the intervention offered to participants is
individualized based on participants’ characteristics or clinical presentation, and then
repeatedly adjusted over time in response to their ongoing performance (see, e.g., Bierman,
Nix, Maples, & Murphy, 2006; Marlowe et al., 2008; McKay, 2005). This approach is based
on the notion that individuals differ in their responses to interventions: in order for an
intervention to be most effective, it should be individualized and, over time, repeatedly
adapted to individual progress. An adaptive intervention is a multi-stage process that adapts
to the dynamics of the “system” of interest (e.g., individuals, couples, families or
organizations) via a sequence of decision rules that recommend when and how the
intervention should be modified in order to maximize long-term primary outcomes. These
recommendations are based not only on the participant’s characteristics but also on
intermediate outcomes collected during the intervention, such as the participant’s response
and adherence. Adaptive interventions are also known as dynamic treatment regimes
(Murphy, van der Laan, Robins, & CPPR, 2001; Robins, 1986), adaptive treatment
strategies (Lavori & Dawson, 2000; Murphy, 2005), multi-stage treatment strategies (Thall,
Sung, & Estey, 2002; Thall & Wathen 2005) and treatment policies (Lunceford, Davidian, &
Tsiatis, 2002; Wahed & Tsiatis 2004, 2006).

The conceptual advantages of adaptive interventions over a fixed-intervention approach (in
which all participants are offered the same type or dosage of the intervention) have long
been recognized by behavioral and social scientists. For example, in the area of
organizational behavior, Martocchio and Webster (1992) studied the effect of feedback on
employee performance in software training, stressing the need to develop training programs
in which training design characteristics are adapted to employee level of cognitive
playfulness (cognitive spontaneity in human-computer interactions). Recently, in their study
of career goal setting, Hirschi and Vondracek (2009) discussed the development and
adaptation of goals as a dynamic process, in which individuals have to select goals
according to personal preferences and environmental opportunities and limitations, optimize
their behavior to achieve those goals, and compensate and adjust if goals become
unattainable or unattractive (also see Abele & Wiese, 2008; Baltes & Baltes, 1990). In the
area of psychotherapy, Laurenceau, Hayes and Feldman (2007), conceptualized individuals’
growth and change during therapy as a dynamic (i.e., nonlinear and discontinuous) process
and highlighted the need to use experimental designs that improve the ability of practitioners
to effectively adjust therapy over time in response to the dynamics of change (Laurenceau et
al., 2007).

Here, we discuss an experimental design and data analysis methods useful for developing
(i.e., for constructing or revising) adaptive interventions in the social and behavioral
sciences. First we review how adaptive interventions use decision rules to operationalize the
individualization of intervention options (i.e., intervention type and dosage) based on
participants’ characteristics, and the repeated adaptation of intervention options over time in
response to the ongoing performance of participants. Next we discuss how the sequential
multiple assignment randomized trial (SMART; Murphy, 2005; Murphy, Collins, & Rush,
2007; see also Lavori & Dawson, 2000; 2004 for related ideas), an experimental design
approach used across the medical fields (e.g., Fava et al., 2003; Lavori et al., 2001;
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Schneider et al., 2001; Stone et al., 1995), can be used to develop adaptive interventions in
the social and behavioral sciences. More specifically, we discuss how data from SMART
designs is useful in addressing key research questions that inform the construction of a high-
quality adaptive intervention. Building on ideas from the clinical literature, we compare the
SMART design with other common experimental approaches. We also provide data analysis
methods that can be used with the resulting SMART data to compare the effectiveness of
intervention options at different stages of the adaptive intervention, and to compare the
effectiveness of adaptive interventions that are embedded in the SMART design. To clarify
ideas and illustrate the data analysis methods we employ data from the Adaptive
Interventions for Children with ADHD SMART study (Center for Children and Families,
SUNY at Buffalo, William E. Pelham, PI). Finally, we discuss directions for future research
for social and behavioral scientists aiming to develop adaptive interventions.

Adaptive Interventions
Adaptive interventions are conceptualized as sequential treatment processes in which the
varying needs of participants are taken into consideration (Collins, Murphy, & Bierman,
2004). This conceptualization has two components: (1) the intervention is individualized
based on the characteristics and specific needs of participants; and (2) the intervention is
time-varying; that is, it repeatedly adapts over time in response to participants’ ongoing
performance and changing needs.

Sackett, Rosenberg, Gray, Haynes and Richardson (1996, p. 71) define evidence-based
practice as “the conscientious, explicit, and judicious use of current best practice evidence in
making decisions about the care of individual patients.” The practical appeal of the adaptive
approach is outlined in Weisz, Chu and Polo’s (2004, p. 302) discussion of dissemination
and evidence-based practice in clinical psychology, which suggests that evidence-based
practice should ideally consist of much more than simply obtaining an initial diagnosis and
choosing a matching treatment. Evidence-based practice

…is not a specific treatment or a set of treatments, but rather an orientation or a
value system that relies on evidence to guide the entire treatment process. Thus, a
critical element of evidence-based care is periodic assessment to gauge whether the
treatment selected initially is in fact proving helpful. If it is not, adjustments in
procedures will be necessary, perhaps several times over the course of the treatment
(p. 302).

In fact, many behavioral and cognitive therapies can be seen as adaptive interventions
(Bierman et al., 2006). For example, group therapy processes are adjusted over time based
on group dynamics and the developmental stage of the group (Cole, 2005; Yalom, 1995).
Cognitive therapy is tailored to address the unique cognitive conceptualization of the patient
and to respond to his/her progress or regression during the process, with therapists basing
the format, content, duration and intensity of the upcoming sessions on the results of the
prior sessions (Beck, Liese & Najavits, 2005). While in practice the idea of adaptive
interventions is not new, limited attention was given to developing research designs and
methods that help scientists and practitioners decide how to individualize and repeatedly
adapt intervention options (i.e., intervention type and/or dosage) in order to optimize long
term outcome. In recent years, intervention scientists are becoming increasingly interested in
experimental designs that explicitly incorporate the adaptive aspects of the intervention. The
general aim is to obtain data useful for addressing key questions concerning the
individualization and adaptation of intervention options so as to inform the construction of
high-quality (i.e., highly efficacious) adaptive interventions.
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Decision Rules and Tailoring Variables
One approach to operationalizing the conceptual idea of an adaptive intervention is to use
decision rules (Bierman et al., 2006) that link individuals’ characteristics and ongoing
performance with specific intervention options. The aim of these decision rules is to guide
practitioners in deciding which intervention options to use at each stage of the adaptive
intervention, using available information relating to the characteristics and/or ongoing
performance of the participant. This approach is conceptually appealing because it mimics
decision processes in real life, in which decision makers select their actions based on
information obtained from the environment and modify their actions based on this
information with the general aim to achieve good long-term outcomes.

In an adaptive intervention, the adaptation of the intervention options is based on the
participant’s values on tailoring variables. These variables strongly moderate the effect of
intervention options, such that the type or dosage of the intervention should be tailored
according to values of these variables. Not all moderators are tailoring variables (Gunter,
Zhu & Murphy, 2011). Consider an example in which both men and women respond better
to high intensity than to low-intensity behavioral intervention, but high intensity behavioral
intervention is more beneficial for women. In this case, although gender is a moderator, both
men and women should be offered high intensity behavioral intervention because both
groups are likely to benefit. Thus, gender is not a tailoring variable (otherwise different
genders should be offered different levels of intervention intensity).

Although the list of candidate tailoring variables depends on the problem at hand, potential
tailoring variables include individual, group, or contextual characteristics representing risk
or protective factors that influence responsiveness to (or need for) intervention type or
dosage. For example, assume an investigator is interested in evaluating an intervention (i.e.,
assessing the effectiveness of the intervention compared to control) that includes 13 weekly
group sessions for improving perceived social support among community residents. Suppose
the investigator considers two types of intervention: one in which group sessions emphasize
cognitive restructuring (e.g., positive assertions to self and others, conflict resolution
strategies, active listening), and one in which group sessions emphasize developing social
skills (e.g., identifying and correcting dysfunctional attitudes in relationships, positive self-
statements, and self-acceptance). Assume that prior scientific evidence suggests that
community residents who are characterized by particular risk factors, for example low self-
esteem, are more likely to benefit from an intervention that emphasizes cognitive
restructuring than on social skills training. Those with high self-esteem, on the other hand,
might find other interventions more beneficial. Accordingly, the investigator might choose
to offer a supportive intervention in which the type of the intervention is individualized
based on baseline levels of self-esteem (i.e., to offer different types of intervention to
community residents with different baseline levels of self-esteem).

Participants’ responsiveness might also be an important tailoring variable. For example,
assume the investigator conjectures that community residents who do not adequately
respond (report low levels of support) to the support intervention within a certain period of
time (e.g., six weeks), might need a more intensive subsequent intervention (e.g., during the
last 7 weeks of the intervention), rather than more of the same. In this case, the investigator
might choose to offer a supportive intervention that adapts to community residents’ response
to the first six weeks of the intervention.

The choice of intervention options can also be tailored by the intervention options the
individual has already received. For example, assume the investigator conjectures that
intensifying the intervention for non-responders might be more effective for those residents
who received cognitive restructuring during the first 6 weeks of the intervention. However,
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it is better to add a cognitive component to those non-responders who received social skills
training during the first 6 weeks of the intervention. In this case, the investigator might
choose to offer a supportive intervention in which the decision of whether to intensify the
support intervention for non-responders to the first six weeks of the intervention varies
depending on the type of support intervention given during the first 6-weeks.

To demonstrate the way decision rules link the tailoring variables to intervention options,
assume the investigator decided to offer a supportive intervention that begins with 6 weekly
sessions of social skills training (denoted as the first stage of the intervention) and then the
sessions offered during the subsequent seven weeks (denoted as the second stage of the
intervention) are tailored according to the participant’s response to the first stage of the
intervention. In this case, the decision rule can be expressed as

First-stage intervention = {social skill development}

IF evaluation = {non-response}

THEN second-stage intervention = {intensify first-stage intervention}

ELSE IF evaluation = {response}

THEN at second stage= {continue on present intervention}

Notice that the IF and ELSE IF parts of the rule contain the tailoring variables; intervention
options are expressed in the THEN parts of this rule. To develop high-quality adaptive
interventions, we focus on constructing good decision rules.

Researchers have used decision rules to operationalize adaptive interventions in several
existing programs. In the Fast Track adaptive intervention for preventing conduct problems
among high-risk children (Conduct Problems Prevention Research Group, 1992), the
frequency of home visits were adapted, and at half-year intervals re-adapted. The tailoring
variables were two types of clinical judgment: ratings of parental functioning and global
assessments of family need for services. Program guidelines were used to link these two
tailoring variables to three prescribed levels of home visiting (e.g., weekly home visits for
low-functioning families; biweekly home visits for moderate-functioning families, and
monthly home visits for high-functioning families (see Bierman et al., 2006). In the
misdemeanor drug court adaptive intervention developed by Marlowe and colleagues
(Marlowe et al., 2008), the frequency of court hearings and type of counseling session were
adapted using pretreatment tailoring variables (history of formal drug abuse treatment and
evidence of antisocial personality disorder) as well as time-varying tailoring variables
(participants’ compliance with the drug court program and results of drug tests). McKay
(2005) evaluated the effectiveness of an adaptive intervention for patients who are alcohol
dependent. This intervention was built around brief telephone contacts, consisting of risk-
for-relapse assessment and problem-focused counseling. When risk levels increased above
specified criteria, participants received stepped-up care, such as more frequent telephone
sessions and sessions of motivational interviewing.

In these programs, the sequence of decision rules that operationalized the adaptive
intervention was pre-specified based on clinical experience and scientific evidence.
However, in many cases, there is not enough evidence a priori to inform the construction of
high-quality sequences of decision rules. There might be open questions (or even debates in
the literature) concerning the best intervention option at specific intervention stages, or other
important questions relating to which tailoring variables to use. For example, consider the
previous example concerning the group-based intervention for improving the social support
of community residents. Suppose the investigator is interested in developing a two-stage
adaptive intervention but there is not enough scientific evidence to determine (a) whether the
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group sessions at the first stage of the intervention should focus on cognitive restructuring or
social skills development; and (b) what is the most efficacious intervention option for
participants who do not respond to the first six sessions. In this case, the investigator might
be interested in obtaining data that informs the development of an adaptive intervention
prior to its evaluation (i.e., assessing the effectiveness of the intervention compared to
control). More specifically, the investigator might be interested in collecting data that
enables him/her to compare the effectiveness of various intervention options at different
stages of the intervention, as well as to compare different sequences of decision rules (i.e.,
different adaptive interventions). To better understand this, consider the following example,
based on the Adaptive Interventions for Children with ADHD study (Center for Children
and Families, SUNY at Buffalo, William E. Pelham, PI).

Adaptive Interventions for Children with ADHD Example
Suppose an investigator is interested in planning an adaptive two-stage intervention to
improve the school performance of children with ADHD. There are two critical decisions
confronting the development of this adaptive intervention: “Which intervention option
should be provided initially?” and “Which intervention option should be provided to
children whose ADHD symptoms did not sufficiently decrease during the first-stage
intervention (i.e., nonresponders)?” First, the researcher considers two possible first-stage
intervention options: low-intensity behavioral intervention, or low-dose medication. Second,
the researcher considers two possible second-stage intervention options for the non-
responding children: to increase the dose of the initial intervention or to add the alternative
type of intervention. More specifically, if the child is not responding to low dose of
medication, the dose of medication can be increased or medication can be augmented with
behavioral intervention. If the child is not responding to behavioral intervention, the
intensity of the behavioral intervention can be enhanced or the behavioral intervention can
be augmented with medication. Table 1 presents four simple adaptive interventions and the
four associated decision rules drawn from this example.

Assuming that an investigator considers the four adaptive interventions presented in Table 1,
the question is how to obtain high-quality data that can be used to contrast these four
adaptive interventions and that, beyond this simple comparison, more deeply informs the
construction of an adaptive intervention for children with ADHD.

Sequential Multiple Assignment Randomized Trial
A SMART is a multi-stage randomized trial, in which each stage corresponds to a critical
decision. Each participant progresses through the stages and is randomly assigned to one of
several intervention options at each stage (Murphy 2005). The SMART was designed
specifically to aid in the development of adaptive interventions. Data from a SMART design
can be used to address primary research questions concerning (a) the comparison of different
intervention options at different stages of the intervention (e.g., the difference between the
firs-tstage intervention options, or the difference between the second-stage intervention
options for non-responding participants); (b) the comparison of adaptive interventions (i.e.,
sequences of decision rules) that are embedded in the SMART design (e.g., the difference
between the four adaptive interventions specified in Table 1; Oetting, Levy, Weiss &
Murphy, 2007); and (c) as described in the companion article (Nahum-Shani, et al, 2011) to
construct more deeply tailored adaptive interventions that go beyond those explicitly
embedded as part of the SMART design.

Trials in which each participant is randomized multiple times have been widely used across
the medical fields. Precursors of SMART include the CALGB study 8923 for treating
elderly patients with primary acute myelogenous leukemia (Stone et al., 1995), and the
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STAR*D for treatment of depression (Lavori et al., 2001; Fava et al., 2003). In recent years,
a number of SMART trials have been conducted. These include trials for treating cancer at
the University of Texas MD Anderson Cancer Center (for more details see Thall, Millikan,
& Sung, 2000; Thall et al., 2007); the National Institute of Mental Health Clinical
Antipsychotic Trials of Intervention Effectiveness (CATIE) study concerning antipsychotic
drug effectiveness for persons with schizophrenia (for more details see Stroup et al., 2003);
and the Adaptive Interventions for Children with ADHD conducted by one of the authors
(W. Pelham) at SUNY-Buffalo. The latter SMART study is discussed above and in the
following.

The ADHD SMART Study
In the first stage of the ADHD SMART study (beginning of the school year), children were
randomly assigned (with probability .5) to a low dose of medication or a low dose of
behavioral intervention. Beginning at eight weeks, children’s response to the first-stage
intervention was evaluated monthly until the end of the school year. Monthly ratings from
the Impairment Rating Scale (IRS; Fabiano et al., 2006) and an individualized list of target
behaviors (ITB; e.g., Pelham , Evans, Gnagy, & Greenslade, 1992; Pelham et al., 2002) were
used to evaluate response. At each monthly assessment, children whose average
performance on the ITB was less than 75% and who were rated by teachers as impaired on
the IRS in at least one domain were designated as non-responders to the first-stage
intervention and entered into the second stage of the adaptive intervention. These children
were then re-randomized (with probability .5) to one of two second-stage intervention
options, either to increasing the dose of the first-stage intervention option or to augmenting
the first-stage intervention option with the other type of intervention (i.e., adding behavioral
intervention for those who started with medication, or adding medication for those who
started with behavioral intervention). Children categorized as responders continued with the
assigned first-stage intervention option. Consistent with each randomization, this trial was
designed to investigate two critical decisions: the decision regarding the first-stage
intervention, and then the decision regarding the second-stage intervention for those not
responding satisfactorily to the first-stage intervention.

The structure of this SMART study is illustrated in Figure 1. The four adaptive interventions
listed in Table 1 are embedded in this SMART study. Notice that each adaptive intervention
embedded in this design is operationalized by a sequence of decision rules that specifies the
intervention options at each stage for both responders and non-responders. Accordingly,
there are responding and non-responding children who are consistent with each adaptive
intervention (i.e., who were assigned to experimental conditions that form a specific
sequence of decision rules). More specifically, each responding child receives only the
initially assigned intervention and thus the child would have received the same treatment
under two different adaptive interventions; these two adaptive interventions differ in only
how nonresponding children are treated. As illustrated in Figure 1, children in subgroups 1
and 2 are consistent with an adaptive intervention that begins with low dose of medication
and then non-responders receive increased dose of medication (subgroup 2) whereas
responders continue with the same low dose of medication (subgroup 1); children in
subgroups 1 and 3 are consistent with an adaptive intervention that begins with a low dose
of medication and then behavioral intervention is added to non-responders (subgroup 3)
whereas responders continue with the same low dose of medication (subgroup 1). Notice
that responders to a low dose of medication (subgroup 1) are consistent with the two
adaptive interventions specified above (i.e., the two adaptive interventions that begin with
low dose of medication). Figure 1 also illustrates that children in subgroups 4 and 5 are
consistent with an adaptive intervention that begins with low-intensity behavioral
intervention and then the intensity of the behavioral intervention is increased for non-
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responders (subgroup 5) and responders continue with the same low-intensity behavioral
intervention (subgroup 4); children in subgroups 4 and 6 are consistent with an adaptive
intervention that begins with low-intensity behavioral intervention and then medication is
added to non-responders (subgroup 6) and responders (subgroup 5) continue with the same
low-intensity behavioral intervention. Notice that responders to low-intensity behavioral
intervention (subgroup 4) are consistent with 2 adaptive interventions (the two adaptive
interventions that begin with low-intensity behavioral intervention).

Other Types of SMART Designs
The ADHD study described above is a SMART study in which re-randomization to the
second-stage intervention options depends on an intermediate outcome (i.e., response/non-
response to first-stage intervention). Other types of SMART designs might vary in the extent
and form of the tailoring that is incorporated in the design. Such aspects of the design are
determined by the investigator based on scientific evidence, as well as ethical
considerations. In the following we describe three other common types of SMART studies:
SMART designs with no embedded tailoring variables; SMART designs in which
participants are re-randomized to different second-stage intervention options depending on
an intermediate outcome; and SMART designs in which whether to re-randomize or not
depends on an intermediate outcome and prior treatment.

SMARTs with no embedded tailoring variables—In these SMART designs
participants are first randomized to two different first-stage intervention options (e.g., B or
C), and then (e.g., after 12 weeks) all participants are re-randomized to two second-stage
intervention options (e.g., D or E) regardless of any information observed prior to the
second-stage randomization (i.e., regardless of any intermediate outcome or prior treatment).
This design is illustrated in Figure 2. Because there are no embedded tailoring variables in
this SMART design, the embedded interventions are non-adaptive. More specifically, there
are four non-adaptive interventions embedded in this SMART design: (1) begin with B and
then offer D; (2) begin with B and then offer E; (3) begin with C and then offer D; and (4)
begin with C and then offer E.

SMARTs in which re-randomization to different second-stage intervention
options depends on an intermediate outcome—Consider a SMART design in which
participants are first randomized to two different first-stage intervention options (e.g., B or
C). Then (e.g., after 12 weeks), all participants are re-randomized to second-stage
intervention options, but second-stage intervention options vary depending on an
intermediate outcome (e.g., response/non-response to first-stage intervention options). More
specifically, assume responders are re-randomized to one of two maintenance interventions,
M or M+, whereas non-responders are re-randomized to either switch to a third intervention
E, or to the combined intervention B+C. This design is illustrated in Figure 3.

There are eight adaptive interventions embedded in this design: (1) begin with B, and then
offer E for non-responders and M for responders; (2) begin with B, and then offer E for non-
responders and M+ for responders; (3) begin with B, and then offer B+C for non-responders
and M for responders; (4) begin with B, and then offer B+C for non-responders and M+ for
responders; (5) begin with C, and then offer E for non-responders and M for responders; (6)
begin with C, and then offer E for non-responders and M+ for responders; (7) begin with C,
and then offer B+C for non-responders and M for responders; (8) begin with C, and then
offer B+C for non-responders and M+ for responders.

SMARTs in which whether to re-randomize or not depends on an intermediate
outcome and prior treatment—Assume for example that participants are first
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randomized to two different first-stage intervention options (e.g., B or C), and then (e.g.,
after 12 weeks) only non-responders to B are re-randomized to either intensify B (B+), or
add the alternative intervention option (B+C). Responders to B are not re-randomized and
remain on the same first-stage intervention option (B); responders to C are not re-
randomized and remain on the same first-stage intervention option (C); and non-responders
to C are not re-randomized and are offered an intensified version of C (C+). This design is
illustrated in Figure 4. Notice that in this design, whether or not a participant is re-
randomized to second-stage intervention option depends on both the observed intermediate
outcome and the prior intervention option offered to the participant. There are three adaptive
interventions embedded in this design: (1) begin with B and then offer B to responders and
B+ to non-responders; (2) begin with B and then offer B to responders and B+C to non-
responders; and (3) begin with C and then offer C to responders and C+ to non-responders.

To better understand the SMART design and its advantages, in the following we compare
the SMART with other common experimental designs.

SMART Relative to Other Experimental Approaches
Factorial design—A classic 2X2 factorial is an experimental design with two factors,
each with two levels that are crossed, resulting in 4 experimental conditions (Collins, Dziak
& Lee, 2009). The SMART design in Figure 2 might seem like a 2X2 factorial design in
which the first factor corresponds to the first-stage intervention options (with two levels: B
and C) and the second factor corresponds to the second-stage intervention option (with two
levels: D and E). However, in the SMART design, the second factor is provided after the
provision of the first factor (e.g., 12 weeks). Furthermore, in many SMART designs,
intermediate outcomes are used to determine whether an experimental unit will be re-
randomized (e.g., the design in Figure 1) or the levels of the second factor to which an
experimental unit will be re-randomized (e.g., the design in Figure 3). Hence, data analysis
methods for addressing primary research questions might differ from those typically used in
a classic 2X2 factorial design (as we later discuss in the analysis methods section).

Just as some factorial designs are unbalanced (e.g., some of the factors are not completely
crossed; see Collins et al., 2009; Dziak, Nahum-Shani & Collins, in press), SMART designs
can be unbalanced as well. In particular the SMART design will be unbalanced when the
prior intervention option determines whether or not an experimental unit will be re-
randomized (e.g., the designs in Figure 4) and/or the second stage intervention options
depend on the prior intervention option (e.g., the design in Figure 1). To clarify this,
consider the ADHD SMART (in Figure 1), in which the intervention option offered to the
child at the first-stage (i.e., the first factor) was used to decide the set of second stage
intervention options if the child did not respond in the first stage. That is, the second stage
interventions for children who do not respond to low intensity behavioral modification are
different from the second stage options for children who do not respond to low dose
medication.

Randomized trial with multiple groups—Sometimes the SMART is equivalent to a
randomized trial with multiple groups, each corresponding to a different adaptive
intervention. For example, in the ADHD example (in Figure 1), instead of randomizing to
two first-stage intervention options and then re-randomizing non-responders at the time of
nonresponse, an investigator might conduct both randomizations prior to the first-stage
intervention. In this case the second randomization will only be used if the participant does
not adequately respond to the first-stage intervention. This approach is equivalent to
randomizing children up-front to the four adaptive interventions in Table 1 with
randomization probability .25 each. However, performing all randomizations prior to the

Nahum-Shani et al. Page 9

Psychol Methods. Author manuscript; available in PMC 2013 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



first-stage intervention (e.g., randomizing to four adaptive interventions) is disadvantageous
if there are important first-stage intermediate outcomes (e.g., adherence to the first-stage
intervention or side effects experienced during the first-stage intervention) that might be
strongly predictive of second-stage primary outcomes. Such first-stage intermediate
outcomes are prognostic factors for the second-stage primary outcome. In this case, the
second-stage intervention groups might, by chance, differ in the distribution of the
prognostic factor, leading to spurious differences between the second-stage intervention
groups in terms of the primary outcome.

To clarify this, suppose that in planning the ADHD (in Figure 1) study we believed that
some families/children are less adherent to any intervention option and thus will generally
exhibit poorer school performance. In this case a natural prognostic factor for the second-
stage primary outcome is adherence to the first-stage intervention. In general, stratification
or blocking is used to achieve distributional balance of a prognostic factor between
intervention groups within each level of a stratum (Efron, 1971; Simon, 1979). In
stratification we partition participants into mutually-exclusive subsets defined by the
prognostic factor. Within these strata, we then randomize between intervention groups. The
purpose of stratified randomization is to provide increased confidence that the compared
groups are similar with respect to known prognostic factors (e.g., adherence to first-stage
intervention) and thus reduce the suspicion that differences in the primary outcome are
simply due to chance differences in the composition of the prognostic factors between
intervention groups (Hedden, Woolson & Malcolm, 2006; Kernan, Viscoli, Makuch, Brass,
& Horwitz, 1999).

Accordingly, if we believe adherence to the first-stage intervention is a prognostic factor for
the second-stage primary outcome, we might stratify randomization to the second-stage
intervention options by the level of adherence to the first-stage intervention. Because
information concerning adherence to the first-stage intervention is not available prior to the
first-stage intervention, we would not be able to randomize a priori to the four adaptive
interventions in Table 1. Instead, we would delay the re-randomization for non-responders
until the time of nonresponse (at which time we will also know the child’s level of
adherence to the first-stage intervention). This is one advantage of multi-stage
randomizations over conducting a trial which randomizes participants up-front to the
different adaptive interventions.

A standard RCT—The traditional approach to intervention development involves
constructing an intervention a priori and then evaluating it in an RCT. For example, Connell
and colleagues (Connell, 2009; Connell & Dishion, 2008; Connell, Dishion, Yasui, &
Kavanagh, 2007) conducted an RCT to evaluate an adaptive family-centered intervention
(described in details in Dishion & Kavanagh, 2003) for reducing adolescent problem
behaviors in public schools. High-risk adolescents were randomly assigned at the individual
level to either control (school as usual) classrooms (498 youths) or adaptive intervention
classrooms (500 youths) in the seventh grade. Typically, the adaptive intervention is
constructed using theory, real-world experience, surveys of the literature and expert opinion.

In RCTs, the goal is to assess whether the intervention results in better primary outcomes
than the control condition (e.g., placebo control, attention control or treatment as usual).
Further development of the intervention is most frequently informed by nonrandomized
comparisons. For example, a common secondary analysis uses lack of fidelity to
intervention assignment (e.g., variation in intervention adherence by staff and participants)
to inform which intervention options are best for which participants and to inform whether
the intervention should vary in response to how the participant is progressing. These
analyses, due to their dependence on nonrandomized comparisons, provide a lower quality
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of evidence than analyses based on randomized comparisons (Cook & Campbell, 1979;
Shadish, 2002; Shadish, Cook & Campbell, 2002). Thus, although RCTs are well suited for
evaluating an adaptive intervention (i.e., assessing its effectiveness compared to control),
they are not as well suited for developing adaptive interventions (i.e., for revising or
constructing adaptive interventions). On the other hand, as we demonstrate below and in the
companion paper (Nahum-Shani et al., 2011), SMART designs enable the data analyst to
conduct randomized comparisons in order to investigate which intervention options are best
for which participants and to investigate whether the intervention should vary in response to
how the participant is progressing.

Single-stage-at-a-time experimental approach—This is a natural alternative to
SMART, particularly when randomized trials involving initial treatments have already been
conducted. In this approach, a separate randomized trial is conducted for each stage, and
each randomized trial involves a new group of participants. Then, the results from each
separate randomized trial are pieced together to infer what the best adaptive intervention
ought to be. Essentially, the single-stage at a time approach focuses separately on each
individual intervention stage in the sequence, as opposed to considering the entire sequence
as a whole. To ascertain the best adaptive intervention, this approach compares available
intervention options at each stage based on a randomized trial for that stage alone and/or
based on historical trials and the available literature. For example, Moore and Blackburn
(1997) recruited outpatients with recurrent major depression who failed to respond to acute
treatment with antidepressant medication, aiming to determine whether cognitive therapy is
a better follow-up treatment than medication. Walsh et al., (2000) recruited patients with
eating disorders who had not responded to, or had relapsed following, a course of cognitive
behavior therapy or interpersonal psychotherapy, aiming to determine the utility of a
pharmacological intervention for patients whose response to psychological treatment was
not satisfactory. In these two examples, investigators conducted randomized trials in order to
compare second-stage intervention options among non-responders, while explicitly or
implicitly making conclusions concerning the best initial intervention option based on the
available scientific literature.

To further clarify this point, assume that instead of the ADHD SMART study discussed
earlier (in Figure 1), an investigator decides to first review the literature on childhood
ADHD in order to choose whether to begin with low-dose medication or low-intensity
behavioral intervention. Then, the researcher conducts a randomized trial for non-responders
in which non-responding children are recruited and then randomized to one of the two
second-stage intervention options (i.e., increase the dose of the first-stage intervention
option, or augment the first-stage intervention option with the alternative type of
intervention). While conceptually simpler than a SMART design, this approach has at least
three disadvantages.

First, this approach might fail to detect possible delayed effects in which an early-stage
intervention option has an effect that is less likely to occur unless it is followed by a
particular subsequent intervention option. This might occur when subsequent intervention
options intensify, facilitate or weaken the impact of initial intervention options. To clarify
this concept, consider research in the area of experimental psychology which suggests that
there might be a delayed effect when attention-control training is provided for improving
individuals’ ability to cope with tasks that require dividing attention (e.g., driving a car).
Gopher and colleagues (see Gopher, 1993; Shani, 2007) have shown that the knowledge and
abilities acquired through attention-control training influence and benefit performance
beyond the specific situation in which these skills were acquired (e.g., when a new
concurrent task was introduced or when no feedback was provided). In fact, such training
appears to contribute to the development of attention management skills that transfer beyond
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the specific situation in which the individual was originally trained, such that the individual
continues to improve as he/she experiences other types of tasks that require the allocation of
attention. In other words, subsequent training/experience that involves different types of
tasks than those used during the initial training provides an opportunity for the individual to
internalize the specialized knowledge acquired during the initial training and hence
facilitates the development of attention management skills. Accordingly, the advantages of
the initial training cannot be fully detected without exposing the participant to subsequent
training or experiences.

Overall, when using the single-stage experimental approach, conclusions concerning the
best initial intervention options are based on studies in which participants were not
necessarily exposed to subsequent intervention options. This might reduce the ability of the
researcher to detect these types of delayed effects, and hence might lead to the wrong
conclusion as to the most effective sequence of intervention options.

Second, the SMART approach enables the researcher to detect prescriptive information that
the initial intervention elicits. The investigator can use this information to better match the
subsequent intervention to each participant, and thus improve the primary outcome. This is
not possible by piecing together the results of single-stage specific randomized trials. For
example, in the context of the ADHD study, results of secondary data analysis (reported in
the companion paper, Nahum-Shani et al., 2011) indicate that the child’s adherence to the
first-stage intervention might be a promising tailoring variable for the second-stage
intervention. Non-responders (to either medication or behavioral intervention) with low
adherence to the first-stage intervention performed better when the first-stage intervention
was augmented with the other type of intervention, relative to when the dose of the first-
stage intervention was increased. Assume the investigator had chosen to take the single-
stage-at-a-time approach and conducted a non-responder trial in which children who did not
respond to medication are randomized to two intervention options (increase the dose of
medication or augment with behavioral intervention). In this more limited study the
investigator would not obtain information concerning the second-stage intervention option
for non-responders who do not adhere to behavioral intervention.

Third, subjects who enroll and remain in studies in which there are no options for non-
responders (or responders) might be different than those who enroll and remain in a SMART
trial. For example, previous studies might not offer subsequent intervention options to
children who are not improving, and hence children in these studies might exhibit differing
patterns of adherence and/or might be more prone to drop out relative to children in a
SMART study who know that their intervention can be altered. Thus the choice of first-stage
intervention option based on the single-stage approach might be based on poorer quality data
(due to non-adherence) relative to the SMART. Moreover, in the single-stage approach, the
investigator usually selects the first-stage and second-stage intervention options based on
data from different samples of participants. Because the samples might differ due to
changing schooling practices, changing diagnostic criteria, and so on, bias can be introduced
into the results (see Murphy et al., 2007 for a detailed discussion of these cohort effects). In
a SMART, on the other hand, conclusions concerning the best first and second-stage
intervention options can be made in a synergetic manner using the same sample of
participants throughout the stages of the decision process.

Analysis Methods
Denote the observable data for a subject in a two-stage SMART by (O1, A1, O2, A2, Y),
where O1 and O2 are vectors of pretreatment information and intermediate outcomes,
respectively, A1 and A2 are the randomly assigned first and second-stage intervention
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options, and Y is the primary outcome of an individual. For example, in the adaptive ADHD
study (see Figure 1), O1 might include severity of ADHD symptoms, whether the child
received medication during the previous school year, or other baseline measures; O2 might
include the subject’s response status and adherence to the first-stage intervention; and Y
might be the teacher’s evaluation of the child’s school performance at the end of the school
year. Let A1 denote the indicator for the first-stage intervention (1=low-intensity behavioral
intervention; −1=low-dose medication) and A2NR denote the indicator for the second-stage
intervention for non-responders to the first-stage intervention (1=increase the initial
intervention; −1= augment the initial intervention with the other type of intervention).

The multiple randomizations in the SMART allow the investigator to estimate a large
variety of causal effects important in the development of adaptive interventions. Here we
consider three primary research questions: (a) concerning the difference between first-stage
intervention options; (b) concerning the difference between second-stage intervention
options; and (c) concerning the comparison of adaptive interventions that are embedded
within the SMART design.

Comparing First-Stage Intervention Options
Consider, for example, the following question concerning the difference between low-dose
medication vs. low-intensity behavioral intervention: “In the context of the specified second-
stage intervention options, does starting with low-intensity behavioral intervention result in
a better long-term outcome relative to starting with low-dose medication?” This question is
addressed by pooling Y from subgroups 1 through 3, and comparing the resulting average to
the pooled Y from subgroups 4 through 6 (in Figure 1). This is the main effect of the first-
stage intervention; that is, the difference between the two first-stage intervention options,
averaging over the second-stage intervention options. Notice that responders to the first-
stage intervention are included in this comparison because a particular first-stage
intervention might lead to good initial response but the performance of responders might
deteriorate over time (see Oetting, et al., 2007 for more details).

Comparing Second-Stage Intervention Options
Consider, for example, the following question concerning the difference between the two
second-stage intervention options: “Among those who do not respond to their initial
intervention, is there a difference between intensifying the initial intervention versus
augmenting the initial intervention?” This question is addressed by pooling Y from
subgroups 2 and 5 and comparing the resulting average to the pooled Y from subgroups 3
and 6 (in Figure 1). This is the main effect of the second-stage intervention options for non-
responding children; that is, the difference between the two second-stage intervention
options, averaging over the first-stage intervention options.

Comparing Adaptive Interventions that are embedded within the SMART design
To understand how to compare adaptive interventions that are embedded in the SMART
design, consider first estimating the mean outcome of only one of the four adaptive
interventions, say (1, 1). In adaptive intervention (1, 1) children are initially provided low-
intensity behavioral intervention and then the intensity of the behavioral intervention is
increased only if the child does not respond. To estimate the mean outcome under this
adaptive intervention, a natural (yet incorrect) approach might be to average the outcomes of
all children in the study who are consistent with this adaptive intervention (subgroups 4 and
5 in Figure 1). Observe that the outcomes of all children who responded to the low-intensity
behavioral intervention are included in this sample average, whereas the outcomes of only
half of all children who did not respond to low-intensity behavioral intervention are included
in this sample average. It turns out that this sample average is a biased estimator for the
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mean outcome that would occur if all children in the population were provided the adaptive
intervention (1, 1). This bias occurs because, by design, non-responding children are re-
randomized and thus split into two subgroups (5 and 6 in Figure 1), whereas the responding
children are not re-randomized and thus not split into two subgroups. Therefore, due to the
restricted randomization scheme, the above sample average contains an over-representation
of outcomes from responding children and an under-representation of outcomes from non-
responding children. To accommodate this over-/under-representation, weights can be used.
Since this over-/under-representation occur by design, we know the value of the weights to
use in order to counteract this over-/under-representation. In particular, the weights are the
inverse of the randomization probability, that is, W = 2 is the weight for responders and W =
4 is the weight for non-responders.1 Informally, each participant receives a weight that is
inversely proportional to his/her probability of receiving his/her own adaptive intervention.
This is similar to the inverse-probability-of-treatment weights used in the estimation of
marginal structural models (MSM) for making causal inferences concerning the effects of
time varying treatments (see Hernán, Brumback, & Robins, 2000; Cole & Hernán, 2008).

In this estimation procedure, the weight assigned to each child depended on whether the
child was a responder or a non-responder to the first-stage intervention. Therefore, the
distribution of the weights depends on the observed response rate in the sample, a statistic
that varies from one sample to the next. In order to account for the sample-to-sample
variance in the distribution of the weights, robust (sandwich) standard errors can be used to
make appropriate inferences (e.g., confidence intervals, p-values) with the weighted
averages (see Hernán, et al., 2000 for more details).

Following the estimation procedure described above, one can obtain the average weighted
outcome, separately, for each of the four adaptive interventions that are embedded in the
SMART study. As indicated above, for each adaptive intervention, the investigator will need
to restrict the dataset and estimate the average weighted outcome only for those participants
who are consistent with that adaptive intervention. However, investigators are typically
interested in carrying out one data analysis (i.e., using one fitted regression model) that
enables them to (a) estimate the mean outcome under all four adaptive interventions
simultaneously; (b) estimate all possible mean-comparisons between the four adaptive
interventions simultaneously, while (c) providing appropriate inferences (e.g., confidence
intervals, p-values) for these estimates. Apart from convenience, doing this has the added
advantage of allowing investigators to control for baseline measures that may be highly
correlated with the outcome. This has the potential to improve effect estimates by reducing
error variance (i.e., leading to smaller standard errors and therefore increased statistical
power).

1The average of the weighted outcomes of all children in the study who are consistent with this adaptive intervention (subgroups 4

and 5 in Figure 1) equals , where wi is the weight assigned to each child who is consistent with adaptive
intervention (1,1), Yi is the outcome associated with that child, and N(1,1) is the number of children consistent with adaptive

intervention (1,1). Investigators may, instead, choose to use normalized weights, such as: , which averages to one

(i.e., ), and still obtain the same average of weighted outcome. Further, the robust standard error calculations used by

SAS Proc Genmod are also a function of weighted averages  where fi is a function of only the i’th child’s
observations. Thus, the robust standard errors also do not change if one uses normalized weights.
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To utilize the entire sample using standard software, the data set needs to be restructured.
This is because some participants’ observations are consistent with more than one of the
embedded adaptive interventions. In the ADHD study these are the responding participants.
A participant who responds, say to low-intensity behavioral intervention has outcomes that
are consistent with two adaptive interventions: Begin with low-intensity behavioral
intervention and then add medication only if the child does not respond (1, −1); and begin
with low-intensity behavioral intervention and then increase the intensity of the behavioral
intervention only if the child does not respond (1, 1). Thus, in order to simultaneously
estimate the mean outcome under adaptive intervention (1,-1) and (1,1) using the ADHD
SMART data, each responder’s outcome would have to be used twice. This point was first
made by Robins and colleagues (Robins, Orellana & Rotnitzky, 2008; Orellana, Rotnitzky &
Robins, 2010) in their approach for use in observational studies to compare adaptive
interventions. In this manuscript, we generalize their approach for use with SMART study
data, as follows.

In the ADHD study we restructure the data set such that instead of one observation per
responder, the new dataset includes two identical observations per responder. Then, for each
responder, we set A2NR to 1 in one of the two replicated observations and A2NR to−1 in the
other replicated observation. For example, if the original dataset included 58 responders
with no value for the indicator A2NR (in the original data set this happens because there is no
variation in second-stage intervention options among responders since they were not re-
randomized), the new dataset includes 116 responders, half in which A2NR = 1 and half in
which A2NR = −1. The number of observations for non-responders (who were re-
randomized with probability .5) remains the same. Such replication of observations enables
investigators to conveniently “reuse” the observed primary outcome from each responding
child in estimating the average outcome of two adaptive interventions using one fitted
regression model. As before, the new dataset should contain a variable providing the weights
for each observation that is the value 2 for observations that belong to responders and 4 for
observations that belong to non-responders.

Note that the replication of observations and the use of weights discussed above serve
different purposes. The weights are used to accommodate for over/under-representation of
outcomes resulting from the randomization scheme. This can occur when (a) the number of
randomizations vary across participants (e.g., some participants are re-randomized while
others are not), and/or (b) randomization probabilities are not equal (e.g., at the first stage,
participants are randomized with probability .6/.4 to medication vs. behavioral intervention
respectively); and/or (c) participants are randomized to differing numbers of intervention
options (e.g., responding children are randomized to two second-stage intervention options,
while non-responders are re-randomized to three intervention options). The replication of
observations on the other hand, is done in order to enable investigators utilize standard
software to conduct simultaneous estimation and comparison of the effects of all four
adaptive interventions. Such replication is required whenever there are participants whose
observations are consistent with more than one embedded adaptive intervention. A technical
explanation of this approach (including weighting and replication) as well as a justification
for the validity of the robust standard errors is provided in Appendix 1.

Using the new dataset, the following model can be estimated

(1)

where Y is the school performance at the end of the school year; O1 is a vector of baseline
measures (obtained prior to the first-stage intervention, and included in the regression model
as mean-centered covariates); β0 is the intercept; β1 − β3 are the regression coefficients
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expressing the effects of the first-stage intervention, the effects of the second-stage
intervention offered to non-responders, and the interaction between them (respectively); and
γ is the vector of regression coefficients expressing the effects of the baseline measures O1.
Accordingly, (1) models the average school performance for each adaptive intervention,
such that E[Y| 1, −1] = β0 + β1 − β2 − β3 is the average school performance for children
following adaptive intervention (1, −1); E[Y|−1, −1] = β0 − β1 − β2 + β3 is the average
school performance for children following adaptive intervention (−1, −1); E[Y| 1, 1] = β0 +
β1 + β2 + β3 is the average school performance for children following adaptive intervention
(1, 1); and E[Y|−1, 1] = β0 − β1 + β2 − β3 is the average school performance for children
following adaptive intervention (−1, 1).

Notice that because the aim of this analysis is to compare the four adaptive interventions
embedded in the SMART design, equation 1 does not include an interaction between the
intervention options (A1, A2NR) and the baseline measures, or intermediate outcomes (O1,
O2). O1 is included in equation 1 only to reduce error variance. However, interactions
between the baseline measures and the intervention options could be included in this
analysis to explore whether these intervention options should be more deeply tailored.
Unfortunately the inclusion of intermediate outcomes in this analysis either by themselves or
as interactions with intervention options can lead to bias; see the companion paper (Nahum-
Shani et al., 2011), for discussion and for a method that can be used to jointly consider
tailoring with baseline measures and with intermediate outcomes (e.g., whether and how the
first-stage intervention should be adapted to the child’s baseline severity measures O1; and
whether and how the second-stage intervention for non-responders should be adapted to the
child’s intermediate outcomes O2).

In order to estimate the model in Equation 1 we use weighted regression with the SAS
GENMOD procedure (SAS Institute, 2008); this procedure minimizes

(2)

to estimate the regression coefficients. The summation is over the observations in the new
dataset, M is the number of observations (i.e., rows) in the new dataset, and W is the weight
assigned to each observation in the new dataset. Because the weights (depending on
response/non-response) are random and observations are replicated, it is not immediately
obvious that the estimator of the mean of the primary outcome for each adaptive
intervention is consistent (unbiased in large samples). In Appendix 1 we provide an intuitive
demonstration of how estimating this model with the SAS GENMOD procedure based on
the new dataset results in consistent estimators of the population averages for the regression
coefficients. To estimate the standard errors, we use the robust (sandwich) standard errors
provided by the SAS GENMOD procedure (SAS Institute, 2008). Justification for the use of
the robust standard errors is also included in Appendix 1. In Appendix 2 we provide the
syntax for estimating the regression coefficients and robust standard errors, using SAS
GENMOD procedure. SAS code for comparing adaptive interventions that are embedded
this this SMART design (including generating the weights and replicating observations) is
available at the following website: http://methodology.psu.edu/ra/adap-treat-strat/
smartcodeex.

Data Analysis Methods for Other Forms of SMART Designs
Above, we discussed data analysis methods for addressing primary research questions using
data from a SMART design in which response/non-response determines whether a
participant is re-randomized (e.g., in the ADHD study only non-responders were re-
randomized to second-stage intervention options). Here, we illustrate how the ideas
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discussed above can be used to compare the embedded adaptive interventions when data is
obtained from other common types of SMART designs. More specifically, we focus on
SMART designs with no embedded tailoring (e.g., the design in Figure 2); a SMART design
in which participants are re-randomized to different second-stage intervention options,
depending on an intermediate outcome (e.g., the design in Figure 3), and a SMART design
in which whether a participant is re-randomized depends on both an intermediate outcome
and the prior treatment (e.g., the design in Figure 4). To address questions concerning the
main effects of the first-stage or second-stage intervention option using data from these
SMART designs, one can use the same analysis methods discussed with respect to the
ADHD SMART study. However, to compare adaptive interventions that are embedded in
the SMART design, the primary difference between the analysis methods for the ADHD
design and these designs concern the form of the weights and which, if any, participant
observations need to be replicated. Also, the model used to compare the embedded adaptive
interventions might differ.

Data analysis for SMART designs with no embedded tailoring variables—
Consider the SMART design illustrated in Figure 2 and assume that at the first stage,
participants were randomized with probability .5 to two intervention options: B or C. After
12 weeks, all participants were re-randomized with probability .5 to two second-stage
intervention options: D or E, regardless of any information observed prior to the second-
stage. Let A1 denote the indicator for the first-stage intervention options (coded −1 for B,
and 1 for C). Let A2 denote the indicator for the second-stage intervention options (coded −1
for D, and 1 for E). Note that because there are no embedded tailoring variables, the
embedded intervention sequences are non-adaptive unlike those in the ADHD study. There
are 4 embedded non-adaptive intervention sequences (see below).

Weights are not required in this setting because all participants are randomized twice, each
with equal probability, and all participants were randomized to the same number of
intervention options (i.e., two). Furthermore because each participant’s observations are
consistent with only one embedded non-adaptive intervention sequence there is no need to
replicate participant observations in order to use common statistical software such as the
SAS GENMOD procedure. Because no observations are replicated and weights are not
assigned, traditional estimates of the standard errors can be used to conduct inference.

A model that can be used to compare the 4 embedded non-adaptive interventions is the usual
ANOVA model:

where Y is the primary outcome; O1 is a vector of baseline measures (obtained prior to the
first-stage intervention, and included in the regression model as mean-centered covariates);
β0 is the intercept, β1 − β3 are the regression coefficients expressing the effects of the first-
stage intervention, the effects of the second-stage intervention, and the interaction between
them, respectively. γ is the vector of regression coefficients expressing the effects of the
baseline measures O1. Accordingly, E[Y| 1, −1] = β0 + β1 − β2 − β3 is the average outcome
for participants following a non-adaptive intervention that begins with C and then offers E
(1, −1); E[Y|−1,−1] = β0 − β1 − β2 + β3 is the average outcome for participants following a
non-adaptive intervention that deigns with B and then offers E (−1, −1); E[Y| 1, 1] = β0 + β1
+ β2 + β3 is the average outcome for participants following a non-adaptive intervention that
begins with C and then offers D (1, 1); and E[Y|−1, 1] = β0 − β1 + β2 − β3 is the average
outcome for participants following a non-adaptive intervention that begins with B and then
offers E (−1, 1).
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Data analysis for SMARTs in which re-randomization to different second-
stage intervention options depends on an intermediate outcome—Consider the
SMART design illustrated in Figure 3 and assume that at the first stage, participants were
randomized with probability .5 to either B or C. After 12 weeks, responders were re-
randomized with probability ½ to one of two maintenance interventions, M or M+. Non
responders, on the other hand, were re-randomized with probability .5 to either switch to a
third intervention E or to the combined intervention B+C. Let A1 denote the indicator for the
first-stage intervention options (coded −1 for B, and 1 for C); let A2R denote the indicator
for the second-stage intervention options for responders (coded −1 for M, and 1 for M+);
and let A2NR denote the indicator for the second-stage intervention options for non-
responders (coded −1 for E, and 1 for B+C). There are 8 embedded adaptive interventions in
this study (see below).

Weights are not required in this setting because all participants are randomized twice, each
with equal probability, and all participants were randomized to the same number of
intervention options (i.e., two). Next each participant’s observations are consistent with two
adaptive interventions; hence the new dataset should contain two replicates of each
participant’s observations. As written above, the replication enables the reuse of the
observed outcome from each participant in estimating the mean outcome of the two adaptive
interventions that are consistent with this participant’s observations. In particular for each
participant who responded set A2NR (i.e., the indicator for the second-stage intervention
options for non-responders) to −1 in one of the two replicated observations and A2NR to 1 in
the other replicated observation; and for each participant who did not respond set A2R (i.e.,
the indicator for the second-stage intervention options for responders) to −1 in one of the
two replicated observations and A2R to 1 in the other replicated observation.

Finally, using the new dataset, standard regression can be applied using a model such as

where Y is the primary outcome; O1 is a vector of baseline measures (obtained prior to the
first-stage intervention, and included in the regression models as mean-centered covariates);
β0 is the intercept, β1 − β7 are the regression coefficients expressing the effect of the first-
stage intervention option, the effects of the second-stage intervention options (offered to
responders and non-responders, respectively), and the interactions between them,
respectively. γ is the vector of regression coefficients expressing the effects of the baseline
measures O1. Accordingly, E[Y|−1,−1,−1] = β0 − β1 − β2 − β3 + β4 + β5 + β6 − β7 is the
average outcome for participants following the adaptive intervention (−1, −1, −1); E[Y|
−1,−1,1] = β0 − β1 − β2 + β3 + β4 − β5 − β6 + β7 is the average outcome for participants
following the adaptive intervention (−1, −1, 1); E[Y|−1, 1,−1] = β0 − β1 + β2 − β3 − β4 + β5 −
β6 + β7 is the average outcome for participants following the adaptive intervention (−1, 1,
−1); E[Y|−1, 1, 1] = β0 − β1 + β2 + β3 − β4 − β5 + β6 − β7 is the average outcome for
participants following the adaptive intervention (−1, 1, 1); E[Y|1,−1,−1] = β0 + β1 − β2 − β3
− β4 − β5 + β6 + β7 is the average outcome for participants following the adaptive
intervention (1, −1, −1); E[Y|1, −1, 1] = β0 + β1 − β2 + β3 − β4 + β5 − β6 − β7 is the average
outcome for participants following the adaptive intervention (1, −1, 1); E[Y|1, 1, −1] = β0 +
β1 + β2 − β3 + β4 − β5 − β6 − β7 is the average outcome for participants following the
adaptive intervention (1, 1, −1); and E[Y|1, 1, 1, O1] = β0 + β1 + β2 + β3 + β4 + β5 + β6 + β7
is the average outcome for participants following the adaptive intervention (1, 1, 1).

Data analysis for SMARTs in which whether to re-randomize or not depends
on an intermediate outcome and prior treatment—Consider the SMART design
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illustrated in Figure 4 and assume that at the first stage, participants were randomized with
probability .5 to either B or C. After 12 weeks, only non-responders to first-stage
intervention option B were re-randomized with probability .5 to either B+ or B+C. Let A1
denote the indicator for the first-stage intervention options (coded −1 for B, and 1 for C). Let
A2NRB denote the indicator for the second-stage intervention options for non-responders to
B (coded −1 for B+, and 1 for B+C). There are 4 embedded adaptive interventions (see
below for a list).

In this study only a subset of participants are randomized twice: the participants who do not
respond to first-stage intervention B. As a result, weights are needed. Specifically, W = 4 is
the weight for non-responders to B because these participants are randomized twice, each
randomization with probability .5. W = 2 is the weight for responders to B, as well as for
responders and non-responders to C because these participants are randomized only once
with probability .5. In terms of replicating observations, only the participants who responded
to first-stage intervention B have observations that are consistent with more than one
adaptive intervention. In particular responders to intervention B have observations consistent
with the two adaptive interventions: begin with intervention B and then intensify to B+ only
if the participant does not respond; and begin with intervention B and then augment to B+C
only if the participant does not respond. In other words, replicating observations for
responders to B enables the reuse of the observed outcome from each responder to B in
estimating the average outcome of two adaptive interventions (−1, 1) and (−1, −1).
Accordingly, for each participant who responded to intervention B, set A2NRB to −1 in one
of the two replicated observations and A2NRB to −1 in the other replicated observation.

Next, to form a model note that because only participants who are initially randomized to
intervention B (A1 = −1), might potentially be re-randomized, A2NRB is nested within A1 =
−1. To represent this nested structure, create a new indicator, Z, that equals 0 when A1 = 1
(the first-stage intervention option is C) and equals 1 when A1 = −1 (the first-stage
intervention option is B). Finally, using the new dataset, standard weighted regression can
be applied based on a model of the form

where Y is the primary outcome; O1 is a vector of baseline measures (obtained prior to the
first-stage intervention, and included in the regression models as mean-centered covariates);
β0 is the intercept; β1 is the regression coefficient expressing the effect of the first-stage
intervention options; and β2 is the regression coefficient that expresses the effect of the
second-stage intervention options offered to non-responders to B. Notice that because
A2NRB is nested within A1 = −1 (or equivalently Z=1), A2NRB only occurs in the product
with Z in this model. γ is the vector of regression coefficients expressing the effects of the
baseline measures O1. Accordingly, E[Y| 1, 0] = β0 + β1 is the average outcome for
participants following the adaptive intervention that begins with C, and then offers C for
responders and C+ for non-responders; E[Y|−1, −1] = β0 − β1 − β2 is the average outcome
for participants following the adaptive intervention that begins with B and then offers B for
responders and B+ for non-responders; and E[Y|−1, 1] = β0 − β1 + β2 is the average outcome
for participants following the adaptive intervention that begins with B and then offers B for
responders and B+C for non-responders. The model above can be estimated with SAS
GENMOD procedure, using a robust SE for inference.
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Data Analysis Results Based On the Adaptive ADHD Data
Sample

149 children (75% boys) between the ages of 5 and 12 (mean 8.6 years) participated in the
study. Due to dropout and missing data2, the effective sample used in the current analysis
was 139. At the first stage (A1), 71 children were randomized to receive low-dose
medication, and 68 were randomized to receive low-intensity behavioral intervention. By the
end of the school year, 81 children were classified as non-responders and re-randomized to
one of the two second-stage intervention options, with 40 children assigned to increasing the
dose of the first-stage intervention, and 41 children assigned to augmenting the first-stage
intervention with the other type of intervention. Overall, 46 children were consistent with
adaptive intervention (1, −1; starting with low-intensity behavioral intervention and then
adding low-dose medication to non-responders and offering the same intensity of behavioral
intervention to responders), 53 children were consistent with adaptive intervention (−1, −1;
starting with low dose of medication and then adding low-intensity behavioral intervention
to non-responders and offering the same dose of medication to responders), 44 children were
consistent with adaptive intervention (1, 1; starting with low-intensity behavioral
intervention and then enhancing the intensity of the behavioral intervention to non-
responders and offering the same intensity of behavioral intervention to responders), and 54
children were consistent with adaptive intervention (−1, 1; starting with low-dose
medication and then enhancing the dose of medication to non-responders and offering the
same dose of medication to responders).

Measures
Primary outcome (γ)—We consider a measure of children’s school performance based
on the Impairment Rating Scale (IRS, Fabiano et al., 2006) after an 8-month period as our
primary outcome. This primary outcome ranges from 1 to 5, with higher values reflecting
better school performance. Because the current analysis is for illustrative, rather than for
substantive purposes, we use this measure as a primary outcome despite limitations relating
to its distribution and reliability.

Baseline measures—(1) Medication prior to first-stage intervention, reflecting whether
the child did (coded as 1) or did not (coded as 0) receive medication at home during the
previous school year (i.e., prior to the first-stage intervention); (2) ADHD symptoms at the
end of the previous school year, which is the mean of teacher’s evaluation on 14 ADHD
symptoms (the Disruptive Behavior Disorders, Rating Scale; Pelham et al., 1992), each
ranging from 0 to 3. We reverse-coded this measure such that larger values reflect fewer
symptoms (i.e., better school performance); (3) ODD diagnosis, reflecting whether the child
was (coded as 1) or was not (coded as 0) diagnosed with ODD (oppositional defiant
disorder) before the first-stage intervention.

Results
Table 2 presents parameter estimates for Model 1 (obtained using the SAS GENMOD
procedure described in Appendix 2), Table 3 presents the estimated means and robust
standard error for each adaptive intervention based on the estimated coefficients in Model 1
(as well as the sample size and the sample mean for each adaptive intervention), and Table 4

2In a full analysis one would want to use a modern missing data method such as multiple imputation to avoid bias. Such methods
would be valid under the Missing at Random assumption. Further discussion can be found in Shortreed, Laber, Pineau, & Murphy
(2010).
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presents the estimated differences and the associated robust standard error for each possible
comparison of the four adaptive interventions.

As shown in Tables 3 and 4, school performance was higher for those children following
adaptive intervention (1, −1; estimated mean=4.36, SE=0.15) relative to those following
adaptive intervention (−1, −1; estimated mean=4.00, SE=0.15). The difference between
adaptive interventions (1, −1) and (−1, −1) was found to be marginally significant (estimated
difference=0.36, SE=0.22, P<.10). No other significant differences were found between the
four adaptive interventions.

Accordingly, this analysis indicates that starting with low-intensity behavioral intervention
and then adding medication to non-responders and offering the same intensity behavioral
intervention to responders is better than starting with low-dose medication and then adding
low-intensity behavioral intervention to non-responders and offering the same dose of
medication to responders.

Discussion
Adaptive interventions are both conceptually and scientifically appealing. Here, we
reviewed the ways in which decision rules can be used to operationalize adaptation and
individualization of interventions in the social and behavioral sciences. We also reviewed
SMART studies, emphasizing their advantages and arguing for an increase in their use for
informing the construction of high-quality adaptive interventions. Finally, we presented a
data analysis method for addressing primary research questions concerning the comparison
of intervention options at different stages of the adaptive intervention, as well as the
comparison of adaptive interventions that are embedded in the SMART design. An adaptive
intervention for children with ADHD SMART study was used to illustrate this method.

SMART designs have the potential to advance research in many areas in the behavioral and
social sciences. For example, in the area of goal setting, although goal-setting theorists
assert that a goal will result in higher performance if it is difficult, attainable, and specific
(Locke & Latham, 1990), more recent approaches to goal setting (see Barlas & Yasarcan,
2006; Fried & Slowik, 2004) suggest that the contribution of goal-setting theory has not
been fully realized because of the failure to systematically capture its dynamic and
sequential nature. For example, with respect to the difficulty of the goal, individuals might
pursue sequential goals, which differ in their level of difficulty: they might function well
with less challenging goals if they perceive the accomplishment of these goals as the basis
for pursuing more difficult and challenging goals in the future (Fried & Slowik, 2004).
Another example relates to the concept of floating goals (see Barlas & Yasarcan, 2006), a
more sophisticated and realistic goal-related structure in which the difficulty of the goal is
adjusted depending on current conditions (e.g., if the performance of an individual is
persistently poor in approaching the original goal, then he/she lowers the goal, but if he/she
exhibits surprisingly good performance, then the goal is pushed higher). These new
approaches raise questions concerning the optimal sequence of goals, and the way in which
the goals should be adjusted over time in order to maximize long-term performance. A
SMART design in which each participant can be sequentially randomized multiple times
might be appropriate for addressing such research questions by allowing within-individual
variation in the extent to which the goal is difficult, attainable, and specific over time.
However, capturing the dynamic and sequential nature of goal setting (in which both self-set
goals and environmental feedback are incorporated into a system that monitors performance
relative to the desired state and repeatedly adjusts subsequent goals; Campion & Lord,
1982), might require a SMART design with a high number of randomizations per
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participant. Accordingly, an important direction for future research would be developing
methods for analyzing data from such designs.

Several other issues warrant further discussion in future research. First, the outcome of
interest in the current paper was a single measurement that expresses long-term school
performance. However, researchers might be interested in other types of outcomes, such as
non-continuous outcomes (e.g., binary or count measures reflecting the severity of ADHD
symptoms); multiple outcomes (e.g., a set of outcome measures reflecting different
dimensions of school performance, such as peer relations, academic performance, and
classroom performance); or longitudinal outcomes (e.g., improvement in children’s
classroom performance over the school year). The model used in the current study can be
easily generalized via a generalized linear model to estimate the difference between adaptive
interventions with respect to binary, categorical or count outcomes. The SAS GENMOD
procedure discussed in the current manuscript allows the specification of various types of
distributions and link functions. Still, additional research attention should be given to
developing data analysis methods for the comparison of adaptive interventions with respect
to other types of outcome measures. It is especially important to generalize our approach to
estimate the difference between adaptive interventions with respect to time-varying
outcomes by utilizing random effects as in growth-curve modeling (Hu, Goldberg, Hedeker,
Flay, & Pentz, 1998).

Second, in a SMART, like other trials (Montgomery, Peters & Little, 2003) there is concern
about the loss of balance and subsequent loss of power due to study dropout and item
missigness. Modern-day missing-data techniques will be needed in the analysis of data from
SMART designs as in the case of any randomized trial. Like any other trials, these
techniques will lead to unbiased results when the data is missing at random (MAR); that is,
the probability that an observation is missing depends on information that is observed (i.e.,
characteristics of the child or baseline severity of ADHD symptoms). If data is missing not
at random (MNAR), that is the probability that an observation is missing depends on
information that is not observed, valuable information is lost from the data, and there is no
universal method of handling the missing data properly (see Donders, van der Heijden,
Stijnen, & Moon, 2006 for review).

Finally, in the current study we discussed primary research questions relating to the
construction of adaptive interventions, but investigators often collect information concerning
other potential moderators of the intervention options, aiming to use these measures to
address secondary research questions concerning the best adaptive sequence of intervention
options. For example, researchers might be interested in assessing whether both the first-
stage intervention and the second-stage intervention should be more deeply tailored to the
individual (perhaps the choice of the first-stage intervention option should depend on
baseline severity, whereas the choice of the second-stage intervention option should depend
on the participant’s willingness to adhere to the first-stage intervention option). In this sense,
additional information concerning potential moderators can be used to explore ways to more
deeply tailor the adaptive intervention while using the advantages of the multiple
randomizations in the SMART to eliminate confounding. In the companion paper (Nahum-
Shani et al., 2011), we provide a secondary data analysis method that can be used to find the
best sequence of decision rules while evaluating potential tailoring variables at each
intervention stage. This data analysis method takes a holistic approach--one that considers
future intervention stages when assessing the best way to tailor the intervention at each
specific stage.
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Appendix 1
In Equation (1) we provided a method for estimating the mean of the primary outcome,
conditional on baseline measures, for each adaptive intervention (a1, a2). This method
employs random weights (e.g., the weight depends on response/non-response) and also
replicates the data of the responders. Thus it is not immediately obvious that the estimator of
the mean of the primary outcome for each adaptive intervention is consistent (unbiased in
large samples). To demonstrate that this is indeed the case we define the mean of primary
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outcome, conditional on baseline measures for each adaptive intervention (a1, a2) using the
language of potential outcomes. Subsequently we demonstrate that this conditional mean
can be consistently estimated by minimizing the total mean squared error given in Equation
(2). Last, we verify that the robust standard errors provided by SAS GENMOD are indeed
unbiased (consistent) in large samples.

Recall that (O1, A1, O2, A2, Y) denotes a participant’s data in a SMART study. Here and
following, uppercase letters represent random variables, and lowercase letters represent
particular values, or realizations, of random variables. Recall that O1 denotes a vector of
baseline measures, (A1, A2) denotes the randomized intervention options and O2 is a vector
of intermediate outcomes. One intermediate outcome is R, the indicator for response (other
intermediate outcomes might be measures of adherence to first-stage intervention, other
measures of severity, etc.). Only non-responding participants have an A2. A particular
adaptive intervention is denoted by (A1, A2) = (a1, a2) (in the ADHD example both a1 and a2
are either 1 or −1). We write that a participant in a SMART study “follows” adaptive
intervention (a1, a2) if this participant’s first-stage intervention is a1 and either this
participant responds throughout the study (R=1) or, if the participant does not respond, then
the participant’s second-stage intervention is a2. Thus, for example, in the ADHD study,
participants who respond to first-stage intervention a1 follow both adaptive interventions (a1,
1) and (a1, −1).

In the potential outcomes framework (Neyman, 1923; Rubin, 1978; Robins, 1986) and for
each fixed sequence of interventions (a1, a2), we conceptualize potential outcomes denoted
by O2(a1) and Y(a1, a2). O2 (a1) is the vector of intermediate observations that a participant
would have had at the second stage if he/she had followed a1 at the first-stage intervention;
O2(a1) includes the indicator of response R(a1). Y(a1, a2) is the primary outcome that would
have been observed had the participant followed the sequence (a1, a2). In the ADHD study
responding participants do not enter the second-stage intervention, thus we have that when
R(a1) = 1, Y(a1, 1) = Y(a1, −1). O2(a1) and Y(a1, a2) are called potential outcomes because
they describe an individual outcome value that would have been observed under a potential
exposure to the intervention that the individual might or might not have actually
experienced. The assumption is that each intervention option has the potential to be
observed until assignment to intervention options is made (for a more detailed definition of
potential outcomes, see Rubin, 1974, as well as Hernán, 2004). The set of all potential
outcomes is

By definition, the multivariate distribution of (O1, O2(a1), Y(a1, a2)) is the multivariate
distribution of (O1, O2, Y) when all individuals follow adaptive intervention (a1, a2). Denote
E[Y(a1, a2)|O1] by μ(a1, a2|O1); we know that μ(a1, a2|O1) minimizes the total mean squared
error for the four adaptive interventions:

Assume that μ(a1, a2|O1) = β0 + β1a1 + β2a2 + β3a1a2 + γTO1. The above can be rewritten as
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(3)

Our goal is to show that the weighted least squares estimator obtained by minimizing

Equation (2), (β̂0, β̂1, β̂2, β̂3, ), is a consistent (unbiased in large samples) estimator of (β0,
β1, β2, β3, γT). We do this by showing that Equation (3) is the large-sample version of
Equation (2).

Since Y(a1, a2) = R(a1)Y(a1, a2) + (1 − R(a1))Y(a1, a2), (3) can be rewritten as

Splitting the squared terms by the indicators, R(a1) and 1 − R(a1), we obtain that Equation
(3) is equal to

(4)

Since A1, A2 are randomized independently of the potential outcomes, Equation (4) can be
expressed as

(To see this, note that if we average out over A1 in the first two terms, the weight 2 cancels
out the randomization probability .5 and we get an additional sum over a1; next if we
average out over both A1, A2 in the last term, the weight 4 cancels out the product of the
randomization probabilities .5*.5 and we get a double sum over a1, a2.)

Next we express Equation (4) and hence Equation (3) in terms of the observed data (O1, A1,
O2, A2, Y) (recall that O2 includes the response indicator R). We assume that Robins’
consistency assumption holds, namely that the observed outcome for a participant equals the
participant’s potential outcome, when the intervention is set to the observed intervention
option (see Robins and Wasserman, 1997). Accordingly, the potential outcomes are
connected to the SMART data by R = R(A1) and = Y(A1, A2); because responders are not
provided a second-stage intervention, A2, R(A1)Y(A1, 1) = R(A1)Y(A1, −1). The
consistency assumption implies that Equation (4) is equal to
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However, the above display is the large-sample version of Equation (2). The number 2 in the
first two terms is the weight given to responders and the number 4 in the third term is the
weight given to non-responders in Equation (2). Thus under mild regularity conditions,(β̂0,

β̂1, β̂2, β̂3, ) is a consistent estimator (unbiased in large samples) of the regression
coefficients in [Y(a1, a2)|O1].

That is, (β̂0, β̂1, β̂2, β̂3, ) is a consistent estimator of (β0, β1, β2, β3, γT).

Last, we provide a sketch of the proof that the robust standard error (sandwich standard
error) provided by the SAS GENMOD procedure is a consistent estimator of the variance-

covariance of the asymptotic normal distribution of (β̂0, β̂1, β̂2, β̂3, ). Note that Equation
(2) is equal to

where N is the number of subjects in the data.

Since (β̂0, β̂1, β̂2, β̂3, ) minimizes Equation (2), the derivative of Equation (2) evaluated at

(β̂0, β̂1, β̂2, β̂3, ) is zero. That is, , where

for i = 1, …, N.

Recall that responders are replicated and get a weight of 2, and non-responders get a weight

of 4. The sum of the weights is . Define
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. A Taylor series for

 in  around (β0, β1, β2, β3, γT) results in

. Solve for ZN to

obtain .

Thus, the large-sample variance-covariance matrix of ZN is given by  where

 and

where I1 is the variance-covariance matrix of Ui(β0, β1, β2, β3, γT). Replacing the

expectation with the weighted sample average (i.e. replacing E with .) and
plugging in the weighted least squares estimator, we obtain an estimator of the variance-

covariance matrix of (β̂0, β̂1, β̂2, β̂3, ), namely, , where

and
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Appendix 2
The following SAS syntax can be used to estimate the weighted regression in (1) (Hernan,
Brumback and Robins, 2000; 2002):

PROC GENMOD data=new;

CLASS id;

MODEL outcome = a1 a2 a1*a2 o1;

SCWGT weights;

REPEATED SUBJECT=id / TYPE=ind;

ESTIMATE 'difference 1, −1 and −1, −1' a1 2 a2 0 a1*a2 −2;

ESTIMATE 'difference 1, 1 and −1, 1' a1 2 a2 0 a1*a2 2;

ESTIMATE 'difference 1, −1 and 1, 1' a1 0 a2 −2 a1*a2 −2;

ESTIMATE 'difference 1, −1 and −1, 1' a1 2 a2 −2 a1*a2 0;

ESTIMATE 'difference −1, −1 and 1, 1' a1 −2 a2 −2 a1*a2 0;

ESTIMATE 'difference −1, 1 and −1, −1' a1 0 a2 −2 a1*a2 2;

RUN;

The first line calls the GENMOD procedure and specifies the working dataset. The second
line specifies the child’s identification number (id) as a categorical variable. The third line
specifies the model to be estimated, identifying the outcome and the independent variables.
The fourth line specifies the variable weights in the dataset as the variable that contains the
weight for each observation, using the SCWGT statement. The program will provide robust
standard errors for the model parameters when the option REPEATED is included, with the
child’s identification number (SUBJECT=id) and the independent working correlation
matrix (TYPE=ind) being specified (see Liang & Zeger, 1986). The ESTIMATE statements
specify the comparisons between the adaptive interventions based on the estimated
coefficients.
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Figure 1.
Sequential multiple assignment randomized trial for ADHD study.
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Figure 2.
Sequential Multiple Assignment Randomized Trial with no embedded tailoring variables.
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Figure 3.
Sequential Multiple Assignment Randomized Trial design in which participants are re-
randomized to different second-stage intervention options depending on an intermediate
outcome (e.g., response/non-response).
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Figure 4.
Sequential Multiple Assignment Randomized Trial design in which whether to re-randomize
depends on an intermediate outcome and prior treatment.
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Table 1

Four Adaptive Interventions and Decision Rules Based on ADHD Example

Adaptive intervention3 Decision rule

(1, −1) First, offer low-intensity
behavioral intervention; then add
medication for non-responders and
continue low-intensity behavioral
intervention for responders.

First-stage intervention option = {BMOD}
  IF evaluation = {non-response}
    THEN second-stage intervention option ={AUGMENT}
  ELSE continue on first-stage intervention option

(−1, −1) First, offer low-dose
medication; then add behavioral
intervention for non-responders, and
continue low-dose medication for
responders.

First-stage intervention option = {MED}
  IF evaluation = {non-response}
    THEN second-stage intervention option={AUGMENT}
  ELSE continue on first-stage intervention option

(1, 1) First, offer low-intensity
behavioral intervention; then increase
the intensity of behavioral
intervention for non-responders and
continue low-intensity behavioral
intervention for responders.

First-stage intervention option= {BMOD}
  IF evaluation = {non-response}
    THEN second-stage intervention option={INTENSIFY}
  ELSE continue on first-stage intervention option

(−1, 1) First, offer low-dose
medication; then increase the dose of
medication for non-responders and
continue low-dose of medication for
responders.

First-stage intervention option = {MED}
  IF evaluation = {non-response}
    THEN second-stage intervention option={INTENSIFY}
  ELSE continue on first-stage intervention option

3The notation (a,b) in column 1 is used here and throughout the manuscript as shorthand for the different adaptive interventions embedded within the SMART in Figure 1. They should not, however, be confused as denoting a non-adaptive sequence of treatments that begins with a and is followed by b for everyone. Rather, treatment b in the notation (a,b) is the treatment recommended to non-responders to initial treatment a. In the simple adaptive interventions considered in this manuscript, all participants who responded to initial treatment a, continued to receive treatment a subsequently; this part of second stage treatment is not encoded in this notation.
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